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AN APPLICATION OF SYNTACTIC PATTERN RECOGNITION
TO SEISMIC DISCRIMINATION®

H8I-HO LIU and KING-SUN FU
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

ABSTRACT

A\
Two syntactic methods for the recognition of seismic

waveforms are presented in this paper. The seismic waveforms are
represented by sentences (strings of primitives). Primitive
extraction is based on a cluster analysis. Finite-state grammars
are inferred from the training samples. The nearest-neighbor
decision rule and error-correcting finite-state parsers are used
for pattern classification. While both show equal recognition
performance: the nearest—-neighber rule is much faster in computa-
tion speed. The classification of real earthquake / explosion

data is presented as an application example.
1. INTRODUCTION

Seismological methods are the most effective and practical
methods for detecting nuclear explosions, especially for under-
ground explosions. Position, depth and origin time of the seismic
events are vuseful information for discrimination, so are body
wave magnitude and surface wave magnitude of the seismic wave
[1,2]. Unfortunately, they are not always applicable and reliable

for small events. It would be very helpful if the discrimination

* This work was supported by the @rant PFR 79-0629&4& and the
ONR Contract NOOO14-79-C-0574.
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is based on the short-period waves alone. The application of pat-
tern recognition techniques to seismic wave analysis has been
studied extensively [(3-5] in the last few years. They all use
short-period waves only. Most of these studies concentrated on
feature selection. Only simple decision-theoretic approaches have
been used. However, syntactic pattern recognition appears to be
quite promising in this area. It uses the structural information
of the seismic wave which is very important in analysis. In this
paper, we present two different methods of syntactic approach ¢to
the recognition of seismic waves. OUne uses the nearest-neighbor

decision rule, the other uses the error-correcting parsing.

In the first method, a pattern representation sybsystem con-
verts the seismic waveforms into strings of primitives. The
string—to-string distances between the test sample and all the
training samples are computed and then the nearest-neighbor deci-
sion rule is applied. The block diagram is shown in Figure 1(a).
The second method contains pattern representation, automatic
grammatical inference and error-correcting parsing. The block

diagram is shown in Figure 1(b).

The pattern representation subsystem performs pattern seg-
mentation, feature selection and primitive recognition so as te
convert the seismic wave into a s¢tring of primitives. The
avtoratic grammatical inference subsystem infers a finite-~state
(regular) grammar from a finite set of training samples. The
error-correcting parser can accept erraneous and noisy patterns

Human interaction is required only in the training stage, mostly
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Figure 1(a) Block diagram of the nearest-neighbor
decision rule for string patterns
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tation Parsing
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Figure 1(b) Block diagram of the error-correcting
parsing system
inference.
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However: extreme cases do exist. A near explosion looks like typ-
ical earthquakes while a deep earthquake looks like typical

explosions. They are shown in Figure 2(b)

I11l. EATTERN REPRESENTATION

Seismic records are one-dimensional waveforms. Although
there exist several alternatives (46,7] for representing one-
dimensional waveforms, it is most natural to represent them by
sentences, i.e., strings of primitives. Three steps are required

for the conversion -—- pattern segmentation. feature selection and

primitive recognition.

A Pattern Seamentation

A digitized waveform to be processed by a digital computer
is wuvsvally sampled #from a continuvous waveform which represents
the phenomena of a source plus external noise. For some cases,
such as EKC wave [B]l, every single peak and valley are signifi-
cant. Therefore these waveforms can be segmented according to the
shape. For others, like EEGC [?) and seismic wave, a single peak
or velley does not reveal tooc much information, especially when
the signal to noise ratio is low. Therefore, they should be seg-
mented by length, either a fixed length or variable length A
variable-length segmentation is more efficient and precise in
representation, but it is usvally very difficult and time consum-
ing to find an appropriate segmentation. A fixed-length segmenta-
tion is much easier to implement. If# the length is kept short

enough it will be adequate to represent the original waveform.

"
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Figure 2(a) Typical samples from each class, explosion
(top) and earthquake (bottom).
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Figure 2(b) Extreme cases from each class, explosion
(top) and earthquake (bottom).

The selection of segment length is caease dependent. It can be

}
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anyuhere between ¢the two extremes, i.e.. as long as the whole
wavetorm or as short as one point. There are tradeoffs between
the representation &ccuracy and analysis efficency. The shorter
the segmentation is: the more accurate the representation will
be. But the analysis becomes more inefficient since the string is
longer and the parsing time is proportional to the string length

Another problem is the noise. If the segmentation is too short,
it will be very sensitive to noise. A rule of thumb‘is that each
segment should contain several periods of the waveforms. In our
seismic data base ;ach seismic record contains 1200 sample
points. The sampling frequency is 10 points per second. Each
record is divided into 20 segments with 60 points in each seg-

ment.

B Esature Selection

This is the most difficult and critical part in pattern
recognition. Any linear functions or nonlinear functions of the
original measurements may be considered as features provided they
give discriminating power. Both time domain features and fre-
quency domain features have been used for seismic discrimination.
For example, complexity and auvtoregressive models are features in
time domain: spectral ratio and third moment of frequency are
features in frequency domain (2] Since we segment the seismic
wave, complexity and spectral ratio features are implicitely con-
tained in the string structure. Furthermore:, the segment may be
too short for a mode]l estimation if we use gshorter segment.

Therefore, we selected a pair of commonly used features -—- zero

N Y
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crossing count and log energy of each segment, which are easy to
compute and contain significant information. Other features may
also serve as good candidates. An advantage of syntactic
approach is that feature selection is simpler, since features are
extracted from segments and each segment is much simpler in com-

parison with the whole wavetorm.

¢ Primitive R it

After segmentation and feature selection, primitives can be
recognized from the analysis of training segments, and an iden-
tifier assigned to sach segment. This problem can be solved in
two ways —— either classified by human experts or by a computer.
We choose the latter, since human classifications are not always
available and reliable. In addition we need to try different seg-
mert lengths in order to find an optimal §egmentation. Therefore,
we use avtomatic clustering analysis to classify each segment. In
the clustering process, similar samples will be grouped together.
The similarity between a pair of samples is usuvally defined by
the distance between them. Each segment is represented by a vec-
tor X = (x‘. Xgr e xg) where x;, 1 £ i < k, is the i-th

feature, k is the total number of features. In our case, k = 2.

If the number of clusters is known, then the K-means algo-
rithm can be applied to find a clustering which minimizes a per-
forrmance index. When the number of clusters is unknown ¢there is
no universally applicable algorithm to determine the optimal

cluster number. We use a bottom—up hierarchical clustering algo-

—— e
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rithm [10] to find ¢the clustering of a sequence of cluster
nunbers. The starting cluster number can be arbitrarily selected.
It ray equal to the number of the training segments. but it is
too time consuming even for a moderately large training set.
Thereafore we start from a smaller number. say 20, to find the
clustering using K-means algorithm. The nearest pair of clusters
will be merged and the cluster number is decreased by one The
K-means algorithm is applied again for reorganization. This
clustering-merging cycle repeats until the cluster number reaches

a preset lower bound, say 5, then the procedure stops.

Algorithm §: Bet¢om-Up Hiergrachical Clustering

Input: A set of n unclassified samples., an vpper bound U
and a lower bound L.

Ouput: A sequence of optimel clusterings for the number of
clusters between U and L.

Method:

1) Let ¢ = U, ¢ is the number aof clusters. and arbitrarily

assign cluster menbership.

2) Reassign membership using K-means algorithm. I¢
c< L . stop.

3) Find the nearvest pair of clusters, say X; and X}.
iX .

4) Merge X; and Xj. delete Xj and decrease c by one.

go to step 2.

The distance between two clusters is defined by




dex; . Xj) = { m; —md' i

where m; . m& is the mean vectors of clusters i, § respectively.

The main problem that still remains unsolved at this point
is to determine the optimal cluster number. Some criteria have
been suggested for determining the optimal cluster number. How~
ever, they are not always applicable. We determine the cluster
number by inspecting the increment of merge distance. When a
merge of two clusters is natural, the increment of merge dictance
should be small; otherwise it will be large. This can only be
determined from & sequence of cluster numbers. The merge dis-
tances of our training samples from 18 clusters down to 7 clus-
ters are shown in Table I. The increments of merge distances are
considerably large after ten clusters. Therefore, it is Treason-—
able to select ten to be the optimal number of clusters. After
the ciuster number had been determined. an identifier was §

j
|

assigned to each <cluster. A test segment is assigned to some

cluster if the distance between the test segment and that cluster !
is the smallest. All the seismic waves are thereby converted into “
|

strings of primitives, or sentences.

III. SYNTAX ANALYSIS

I¢ the classification is all we need. then the nearest-

f neighbor decision rule is recommended because of it’'s computation

efficiency. On the other hand, if a complete description of the

waveftorm structure is needed, we have to use (error-correcting)

parsing. An error-coftrecting parser instead of regular parser is

.
B e R N ST S P ST S



TABLE I
Merge distances of bottom-up
hierarchical clustering process

Cluster Merge distance Increment of
number merge distance

18 18.7

17 29. 9 11. 2

16 36. 6 6.7

15 37.7 1.1

14 43.7 6.0

13 47. 6 3.9

12 §7.2 9.6

11 &7. 4 10. 2

10 ?4. 5 27.1

e 105. 4 10. 9

a 144. 9 39.5

7 187. 1 42. 2

required for most practical pattern recognition applications.
Since noisy and errors in previous processings vsually cause reg-
vlar parsers to fail. It is not unusual that even a perfect pat-
tern can not be parsed by a regular parser. especially when the
gramnar is inferred from a small set of samples. In that case,
the error-correcting parsing is equivalent to finding the dis-
tance between a sentence and a language. The parse of the sen-

tence may contain some error productions.

A Nearest-Neighbor Decision Rule
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The concept of nearest-neighbor decision rule in syntactic
approach is the same as that in decision—theoretic approach. The
only difference is in distance calculation. The distance between
two strings is sometimes called Levenshtein distance [11], which
k is the minimum number of symbol insertions, deletions and substi-
tutions required in order to transform one string into the other.
I¢ different weights are assigned ¢to different symbols and/or
operations, then the distance becomes & weighted Levenshtein dis—
tance. These distances can be computed using dynamic programming

method (12]. Figure 5 shows the shortest path which transforms

the string on the left into the string on the top. ;

6 a b a a p

0 i

o o » o P

Figure 5 The shortest path which transforms string ‘ababb’ f
into string ‘aabaab’. The distance between these
two strings is 2. Horizontal movement means
insertion; vertical movement means deletion;
diagonal movement means substitution. Each
insertion, deletion and substitution have same

weight 1.

. Ervor-Correcting Finite-State Parsing

Before parsing can take place we must have a grammar. which

can be either heuristically constructed or inferred from a set of
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training samples. In order to study the learning capability of

our syntactic method: we choose the grammatical inference

approach.

Phrase Structure Qrammar

A phrase structure grammar C is a 4-tuple

G = (VNI VT. P, S), where

Vy: finite set of nonterminal symbols
Vp: finite set of terminal symbols, VyU vy =V,
Uy N vy = ¢ |

8 : start symbol., S € V.

P : finite set of productions or rewrite rules of the
form o -> f. o. B € vE, s x A V* is the set of all finite
length strings of symbols from V., including A. the null

string, v = v¥ - o0

Let € = (Vh. Vg P, S) be a grammar. If every production in
P is of the form A ~> aB, or A -> a, A, B € V' @ € Y. then the

grarnar Q0 is finite-state or regular (13).

Phrase structure grammars have been used to describe pat-
terns in syntactic pattern recognition (14]. Each pattern is
represented by a string of primitives which corresponds to a sen-
tence in a language (tree or graph in high dimensional grammars)

All strings which belong to the same class are generated by one

gramaar.
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A set of sentences S+ is @ positive sample of a languvage
L(C), ié¢ S*Q L(G). A set of sentences § is a negative sample of

a language L(G), if 8 € L(G).

A positive sample s* of a language L(C) is structurally com-—

plete i# each production in O is used in the genevation of at

least one string in 8 (131

We assume that the set S is structurally complete and st [~
LGy, where G, is the inferred grammar. Theoretically, if s* is
a strycturally complete sample of the language L(G) generated by
the finite-state grammar G then the canonical grammar Qc can be
inferred from s*. A set of derived grammars can be derived from
GC' -Tho derived grammars are obtained by partitioning the set of
nonterminals of the canonical grammar into equivalence classes.
Each nonterminal of the derived grammar corresponds to one block
of the partition. Since the number of possible partitions is too
large it is infeasible to evaluate all the partitions. Therefore
sore algorithms such as k—-tail algorithm (161 has been suggested
to reduce the number of derived grammars. These algorithms have
one disadvantage. The rTeduced subset of derived grammars may not
contain the source grammar. However, it will be sufficient if one
only interests in an estimate of the source grammar. There are at
least twa situations where a grammatical inference algorithm can
be used. In the first case there exists a source grammar which
generates & language and we want to infer the source grammar or
avtonaton based on the observed samples. In the second case the

exact nature of the source grammar is unknown, the only
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information we have is some sentences generated by the source We
assure that the source grammar falls into a patricular class and
infer a grammar which generates all the training samples. and
hopefully will generate some samples belonging to the same class

I# & negative sample toﬁ is given the inferred grammar must not

generate any sample in the negative sample set.

Grammars more complex than finite~state grammars and res-
tricted context-free grammars (in Chomsky hierarchy) can not be
inferred efficiently without human interaction. Therefore we
choose finite-state grammars to describe the seismic waves
Another reason is that no obvious self-embedding property appears

in seismic waves, finite-state grammars will be sufficient in

generating power.

The inference of regular grammars has been studied exten-
sively., The k—-tail algorithm finds the canonical grammar first
and then merges the states which are k-tail equivalent. This
algorithm is adjustable, the value of k controls the size of the
inferred grammar. Another algorithm called tail-clustering algo-
rithm (17) also finds the canonical grammar first. but then
merges the states which have common tails. This algorithm is not
as flexible as the k-tail algorithm:, but will infer a grammar
which is closer to the source grammar in some cases. Since the
grammar is inferred from & small set of training samples. we can
only expect that the inferred grammar generates all the ¢training

samples and will generate other strings which are similar to the

training samples
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The generating power of the inferred grammar relies entirely
on the merge procedure. If no merge exists then the inferred
grarmar will generate exactly the same training set, no more no
less. Since all the seismic records have the same length in our
example, the sentences representing these signals also have the
same length. The merge of states does not happen in our experi-

ment when using tail-clustering algorithm.

Error-Correcting Parsing

After a grammar is available, either by inference or con-
struction, the next step is to design a recognizer which will
recognize the patterns generated by the grammar. If the grammar ¢
is finite-state, a deterministic finite-state automaton can be

constructed to recognize the strings generated by G.

Noise problem and primitives recognition error usvally occur
in pratice. Conventional parsing algorithms can not handle these
sitvations. A few approaches have been proposed. Error-correcting
parsing is one of them (18], The pattern grammar is first
transformed into a covering grammar that generates the correct
sentences as well as all the possible erroneocus sentences. The
errors in string patterns are substitution error, deletion error
and insertion error. For nonstochastic grammar, the minimum-

distance criterion can be used for error—-correcting parsing.

Since all the sentences in our example have the same length.
only the substitution error needs to be considered. For each pro-

duction A -> aB and A -> a in the original grammar we add A -> bB
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and A -> b respectively to the covering grammar. where A, B € V.
a b € V,, b x5 a Different weight can be assigned to each error
production, therefore: resulting an minimum-cost error-correcting
parser. The assignment of weights is very crucial. We wuse the
distance between clusters a and b as the weight for substituting
@ by b and vise versa. Since a finite-state grammar can be
represented by a transition diagram. Thus, a minimum-cost error-
correcting parsing is equivalent to finding a minimum cost path
from initial state ¢to final state. The parsing time is propor-

tional to the length of the sentence.

Aloorithe 2: Hinimum-Cost paths

Input. A transition diagram with n nodes numbered 1. 2
+...+ N, where node 1 is initial state and node n is final state.
and a cost function c;} (a), for 1 € i, jL£n a€32, with c;_d- (a)
20, for all i and §j. An input string s.

Output. in the lowest cost of any path from node 1 to node n
whose sequence is equal to that of the input string s.

Methad.

1) Set k = 1.

2) For all 1 € y £ n: m1} = min {m1K + cké(b)' for all
1 £k £n) where b is the k-th symbol of input string s.

3) I# k < !s!, increase k by 1 and go to step (2).
I¢ & = ls!, go to step (4).

4) output LITY which is the lowest cost from node 1 to

node n following the move of input string s. Stop.

The production number can be stored with c{J(a). and the
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parse can be stored with mq.

If insertion and deletion errors are to be considered: then
the parser will still be similar except that we have to compute
and store the information V(T, &, a) which is the minimum cost of
changing character ‘a’ into some string which can change the
state of the automaton from state T to 8 [19). The inclusion of
insertion and deletion errors makes the error correction more
complete, but assigning appropriate weights ¢to insertion and

deletion evrror could be even more difficult

LY. EXPERIMENTAL RESULTS

Our seismic data are provided by professar C. H Chen. They
were recorded at LASA in Montana. The original data contains 323
records. Due to some technical problems in data conversion we
only get 321 records. Among them 111 records are nuclear explo-
sions and 210 records are esarthquakes. The experiment was run on
a VAX 11/780 computer vsing PASCAL programming language. A set of
SO carefully selected samples from each class is used as training
samples. The remaining 210 samples are test samples. The weights
for substitution errors are shown in Table II. The results shouwn
in Table IIl and Table IV are the information about the inferred
grarnar and parsing. The grammars are inferred using K-tail algo-
tiths with different values of k. Table III contains the number
of nonterminals, the number of productions and ¢the number of

negative samples accepted. Table IV contains average parsing time

for one string and the percentage of correct classificeotion. It
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Q can be seen that as the value of k becaomes smaller, the parsing
time becomes shorter but the classification error becomes larger.

This results from the uneven merge of the nonterminals. Due to

the characteristics of our sample set only those states having
the longest tails are merged. The results using nearest-neighbor
decision rule are shown in Table V. It compares the string~to-
string distance between the test sample and the whole class of
training samples. The computation speed of nearest-neighbor rule
is much faster than that of error—correcting parsers. Althouth
the uvltimate performance is about the same. As far as practical i
computation is concerned: nearvest-neighbor decision rule is much
faster than the grammatical approach.

TABLE II
Weights for substition error

a b < d ] ¢ g h i J
a 0 033 043 0.79 0.86 0.76 0.91 0.62 0.60 O0.61
b 0.39 0O 0.28 046 0.5 0.54 0.85 0.33 0.48 0.29
c 0.43 0.28 0O 0.4 0.44 0.31 0.57 0.23 0.20 0. 46
d 0.79 0.46 O.46 0 022 0.41 0.88 0.24 0.5 0.28
e 0.86 0.56 0.44 0.22 0 0.2 0.71 0.24 0.46 0. 48
f 0.76 0.54 0.31 0.41 0.24 0 0.47 0.24 0.24 0.58
9 0.91 0.8%5 0.57 0.88 0.71 0.47 0 0.8 0.37 1.00
h 0.62 0.33 0.23 0.24 0.24 0.24 0. 48 0O 033 034
i 0.0 0.48 0.20 0.5 0.46 0.2 0.37 0. 33 o] 0. 64
J 0.61 0.29 0.46 0.28 0.48 0.58 1.00 0.34 0. 64 0

¥ CONCLUDING REMARKS
X | . . .
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TABLE 111
The number of nonterminal, production and negative samples
accepted of the inferred grammars. The inference algorithm
is k—tail algorithm with different values of k.

Explosion Earthquake No. of
: k negative
Nonterm. Product. Nonterm. Product. samples
No. No. No. No. accepted
20 748 796 746 794 (o)
19 748 796 746 794 (o)
18 741 796 737 794 0
_ 17 722 778 715 772 (o]
- 16 694 751 686 743 0
| 15 656 714 630 708 o
§ 14 %10 668 608 bbb 0
% 13 Lu 618 Sé61 619 0
12 510 568 311 569 o)
i1 4560 518 451 519 0
9 360 418 361 419 o
7 262 319 261 319 2
] 166 222 1464 220 )

Though the classification results seem satisfactory they are
very sonsi%ivovto the feature selection, the selection of train-
ing samples and the weight assignment of error productions.
Although a finite set of samples have some limitations. It still

mates sense to pursue more studies about the following problems.

1. Feature selection. How to find & set of distinguishable

features is the most important part in practical applications.
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TABLE 1V
The average parsing time and percentage of correct
classification of the error—correcting parsers with
different velues of k.

k Average parsing time Percentage of correct
i for one string (sec) classification (%) ,
f 20 2.6 90. 5 |
' 19 2.6 90. 5 |
18 2.8 85.5
17 2.7 82.8
16 2.6 75. 6
\ 15 2.5 74.0
i 14 2 4 73.8
~§ 13 2.1 73.3
12 1.9 72. 9
11 1.7 71.0
9 1.4 70. 1
7 1.1 70. 6
S 0.8 &0. 2

The difficulty increases when the class are somewhat overlapped

Possible solution are finding some kind of transformation which
will seperate the classes or selecting the most distinguishable
feature. Most of the features which are effective for statistical
approach can be used for syntactic approach. The selection of
feature number also deserves consideration. Some criteria are

needed so that a judgement can be made.

2 8election of training samples. It would be helpful ¢
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TABLE V
Classification results using
nearest-neighbor decision rule

Average time for Percentage of
one string (sec) correct classification
0.07 90.5 %

200 records are correctly
classified out of 221

human experts are available for consultation. The clustering
technigques can be wused to get an initial training set, then it
can be adjusted to obtain the best results. Clustering techniques
can also be used to find good prototypes from a set of samples.
A srall set of well-selected ¢training samples will certainly

reduce computation ¢time and, in the meantime, may improve the

classification accuracy.

3 UWeight assignment of error productions. This part is very
important in error-correcting parsing, and only exists in syntac-
tic approach. Equal weight assignment is very easy to implement
and has been used. However, it is not always appropriate since
costs should be different for different errors. The similarity
between two primitives is a good reference for assigning weights
to substitution errors. The weights of insertion and deletion

errors are wmore difficylt to assign. Only heuristic approaches

have been known so far.
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